JOURNAL ARTICLES
Świdrak, J., Pochwatko, G., & Insabato, A. (2021). Does an agent’s touch always matter? Study on virtual Midas touch, masculinity, social status, and compliance in Polish men. Journal on Multimodal User Interfaces. https://doi.org/10.1007/s12193-020-00351-x
Adhikari, M. H., Griffis, J., Siegel, J. S., Schotten, M. T. de, Deco, G., Instabato, A., Gilson, M., & Corbetta, M. (2020). Effective connectivity extracts clinically relevant prognostic information from resting state activity in stroke. MedRxiv, 2020.12.11.20247783. https://doi.org/10.1101/2020.12.11.20247783
Gilson, M., Dahmen, D., Moreno-Bote, R., Insabato, A., & Helias, M. (2020). The covariance perceptron: A new paradigm for classification and processing of time series in recurrent neuronal networks. PLOS Computational Biology, 16(10), e1008127. https://doi.org/10.1371/journal.pcbi.1008127 Download
Benitez Stulz, S., Insabato, A., Deco, G., Gilson, M., & Senden, M. (2019). Comparing Task-Relevant Information Across Different Methods of Extracting Functional Connectivity. BioRxiv, 509059. https://doi.org/10.1101/509059
Gilson, M., Zamora-López, G., Pallarés, V., Adhikari, M. H., Senden, M., Campo, A. T., Mantini, D., Corbetta, M., Deco, G., & Insabato, A. (2019). Model-based whole-brain effective connectivity to study distributed cognition in health and disease. Network Neuroscience, in press. https://doi.org/https://doi.org/10.1162/netn_a_00117
Pallarés, V., Insabato, A., Sanjuán, A., Kühn, S., Mantini, D., Deco, G., & Gilson, M. (2018). Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity. NeuroImage, 178, 238–254. https://doi.org/10.1016/j.neuroimage.2018.04.070 Download
Insabato, A., Cunningham, J. P., & Gilson, M. (2018). Bayesian estimation for large scale multivariate Ornstein-Uhlenbeck model of brain connectivity. ArXiv:1805.10050 [Cs, Stat]. http://arxiv.org/abs/1805.10050 Download
Insabato, A., Pannunzi, M., & Deco, G. (2017). Multiple Choice Neurodynamical Model of the Uncertain Option Task. PLoS Computational Biology, 13(1), e1005250. https://doi.org/10.1371/journal.pcbi.1005250
Paz, L., Insabato, A., Zylberberg, A., Deco, G., & Sigman, M. (2016). Confidence through consensus: a neural mechanism for uncertainty monitoring. Scientific Reports, 6, 21830. https://doi.org/10.1038/srep21830
Insabato, A., Pannunzi, M., & Deco, G. (2016). Neural correlates of metacognition: A critical perspective on current tasks. Neuroscience and Biobehavioral Reviews, 71, 167–175. https://doi.org/10.1016/j.neubiorev.2016.08.030
Martinez-Garcia, M., Insabato, A., Pannunzi, M., Pardo-Vazquez, J. L., Acuña, C., & Deco, G. (2015). The Encoding of Decision Difficulty and Movement Time in the Primate Premotor Cortex. PLoS Computational Biology, 11(11), e1004502. https://doi.org/10.1371/journal.pcbi.1004502
Insabato, A., Dempere-Marco, L., Pannunzi, M., Deco, G., & Romo, R. (2014). The influence of spatiotemporal structure of noisy stimuli in decision making. PLoS Computational Biology, 10(4), e1003492. https://doi.org/10.1371/journal.pcbi.1003492
Insabato, A., Pannunzi, M., Rolls, E. T., & Deco, G. (2010). Confidence-related decision making. Journal of Neurophysiology, 104(1), 539–547. https://doi.org/10.1152/jn.01068.2009
BOOK CHAPTERS
Insabato, A., Deco, G., & Gilson, M. (2019). Imaging Connectomics and the Understanding of Brain Diseases. In Y.-K. Kim (Ed.), Frontiers in Psychiatry: Artificial Intelligence, Precision Medicine, and Other Paradigm Shifts (pp. 139–158). Springer. https://doi.org/10.1007/978-981-32-9721-0_8
MEDIA
Insabato, Andrea, I., Pannunzi, Mario, & Deco, Gustavo. (2017). ¿Saben los animales que piensan lo que piensan? Investigación y Ciencia, 485. https://www.investigacionyciencia.es/revistas/investigacion-y-ciencia/la-observacin-de-ondas-gravitacionales-695/saben-los-animales-que-piensan-lo-que-piensan-14926