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A B S T R A C T

The study of brain communication based on fMRI data is often limited because such measurements are a mixture of session-to-session variability with subject- and
condition-related information. Disentangling these contributions is crucial for real-life applications, in particular when only a few recording sessions are available. The
present study aims to define a reliable standard for the extraction of multiple signatures from fMRI data, while verifying that they do not mix information about the
different modalities (e.g., subjects and conditions such as tasks performed by them). In particular, condition-specific signatures should not be contaminated by subject-
related information, since they aim to generalize over subjects. Practically, signatures correspond to subnetworks of directed interactions between brain regions
(typically 100 covering the whole brain) supporting the subject and condition identification for single fMRI sessions. The key for robust prediction is using effective
connectivity instead of functional connectivity. Our method demonstrates excellent generalization capabilities for subject identification in two datasets, using only a
few sessions per subject as reference. Using another dataset with resting state and movie viewing, we show that the two signatures related to subjects and tasks
correspond to distinct subnetworks, which are thus topologically orthogonal. Our results set solid foundations for applications tailored to individual subjects, such as
clinical diagnostic.
Introduction

Blood-oxygen-level dependent (BOLD) signals in functional magnetic
resonance imaging (fMRI) have been used for more than two decades to
observe human brain activity and relate it to cognitive functions (Cordes
et al., 2000; Amunts et al., 2014). Even at rest, the brain exhibits patterns
of correlated activity between distant areas (Biswal et al., 1995; Raichle
et al., 2001). Although a consensus has yet to be reached, many methods
have been proposed to quantify this activity and extract
functionally-relevant information, beyond the widely-used functional
connectivity (FC) that measures the statistical dependencies between the
BOLD activities of brain regions. For instance, interest in the temporal
BOLD structure for both individual regions (He, 2011) and between areas
(via the cross-covariance lags at the scale of seconds) (Mitra et al., 2015)
has grown; the ‘dynamic FC’ was defined to quantify the BOLD
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correlations at the scale of minutes (Preti et al., 2017; Gonzalez-Castillo
and Bandettini, 2017). Following fundamental discoveries about brain
functions, fMRI has increasingly been used to complement clinical
diagnostic for neuropathologies (Matthews and Hampshire, 2016).
Resting-state fMRI has also been found to be informative about neuro-
psychiatric disorders (Greicius, 2008): Alterations in FC correlate with
and can predict the clinical scores of several diseases (Kurth et al., 2015;
Rahim et al., 2017). This defines “signatures” in the form of subnetworks
of links between brain regions that consistently covary with respect to
behavioral or pathological conditions.

It has recently been shown that fMRI signals are strongly biased by
individual traits (Miranda-Dominguez et al., 2014; Finn et al., 2015,
2017; Calhoun et al., 2017), which should be taken into account when
extracting task-specific signatures (Poldrack et al., 2009; Xie et al., 2017).
Generalizing, the mixture of session-to-session, subject-specific and
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condition-related variability in FC is a severe limitation for real-life ap-
plications when only a few sessions per subject can be recorded (Varo-
quaux et al., 2017; Woo et al., 2017). In that respect, FC measures
obtained from successive recording sessions have been found not to be
reliable individually (i.e., at the level of single links), but only collec-
tively (Shehzad et al., 2009; Mueller et al., 2015; Chen et al., 2015;
Pannunzi et al., 2017). Because previous studies (Finn et al., 2015;
Miranda-Dominguez et al., 2014; Finn et al., 2017; Xie et al., 2017) were
limited to datasets with at most 3 sessions for the same behavioral con-
dition per subject, we aim to rigorously assess the generalization capa-
bility of prediction methods to future (unseen) data. Meanwhile, we
examine how multivariate classification can disentangle signatures for
distinct modalities (here subject and condition/task).

Distributed signatures in FCacross thewholebrainhavebeenobserved
in memory tasks (Rissman and Wagner, 2012) or when the subject expe-
riences psychological pain (Chang et al., 2015). Moreover, the etiology of
many mental disorders is unknown: They are suspected to arise from
network dysfunction, as reported for large-scale FC alterations in patients
with schizophrenia (Hoptman et al., 2012). These examples strongly point
in favor of whole-brain approaches to study high-level cognition (Deco
et al., 2011) and brain diseases (Deco and Kringelbach, 2014); in contrast,
focusing on a few cortical areas only to test hypotheses (Goebel et al.,
2003; Bastos-Leite et al., 2015) may not capture sufficient information or
network effects. Such whole-brain approaches typically involve a large
number of parameters to estimate, which may impair the robustness of
classification based on these parameters. One aimof the present study is to
provide a practical answer to this trade-off.

The idea underlying the study of FC —in the broad sense— is that it
reflects how brain areas dynamically bind to exchange and process in-
formation (Fries, 2005; Hipp et al., 2011; Betti et al., 2013). To go beyond
a phenomenological description of FC, we employ a large-scale effective
connectivity (EC) relying on a model inversion (Gilson et al., 2016) to
decompose FC into changes in network connectivity and local fluctuating
activity. We borrow the EC terminology to describe interactions between
brain regions from dynamic causal modeling (Friston, 2011) despite
differences with our model, which will be discussed later. So far,
DCM-based EC has been used for classification, but using 6 ROIs and two
sessions only (Brodersen et al., 2011). Here we stress the need for
adequate quantitative methods to assess to which extent EC can predict
the subject's identity (Miranda-Dominguez et al., 2014; Fr€assle et al.,
2015) or behavioral condition (Gonzalez-Castillo et al., 2015), because
the inference of signatures —e.g., changes in FC that “simply” correlate
with behavioral conditions (Li et al., 2012; Bastos-Leite et al., 2015;
Gilson et al., 2017)— does not guarantee robustness in the classification
performance. In other words, parameter inference hints at putative sig-
natures, but their predictive power must be carefully verified. As
mentioned earlier, the overlap between subject- and condition-related
signatures may impair the classification performance, when some links
are sensitive to both modalities and should be excluded (or “conditioned
out” as with probabilities) to disentangle the signatures.

The present study aims to set a new standard for extracting multi-
variate signatures from fMRI data, here applied to discriminate between
subjects or behavioral conditions. It is organized in two parts. First, we
couple whole-brain EC estimation with adequate machine learning tools
to control for session-to-session variability. The focus is on the compar-
ison between EC and FC in their generalization capabilities to unseen
data for the classification of single resting-state fMRI sessions with
Table 1
Details of the datasets used in the present study.

Dataset name Acquisition/Reference Su

Dataset A1 Day2day project (Filevich et al., 2017) 6
Dataset A2 Day2day project (Filevich et al., 2017) 50
Dataset B CoRR (Zuo et al., 2014) 30
Dataset C (Mantini et al., 2012; Gilson et al., 2017) 19
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respect to (healthy) subjects (Finn et al., 2015; Miranda-Dominguez
et al., 2014). We use datasets with large numbers of sessions per subject
to provide a benchmark with an unprecedented level of control. Second,
we predict both subject identity and condition (rest versus movie
viewing) to verify that EC can disentangle the two types of signatures. To
do so, we examine the topological distribution of the EC links supporting
the twofold classification, which allows us to quantify the overlap be-
tween the two signatures. This second part thus aims to assess the
generalization capability of EC for multivariate classification.

Results

Functional and effective connectivity as measures of brain network
dynamics

In this study we used fMRI data from the three datasets described in
Table 1. Classical functional connectivity (corrFC) was calculated using
the pairwise Pearson correlation coefficient (PCC) between the time
courses of theN regions of interest (ROIs), obtaining an N � N symmetric
matrix for each recorded session (N ¼ 116 for Datasets A and B, N ¼ 66
for Dataset C); see Eq. (2) in Methods. In parallel, we used the whole-
brain dynamic model (Gilson et al., 2016, 2017) in Fig. 1B: Each ROI is
a node in a noise-diffusion network whose topology (skeleton) is deter-
mined by the structural connectivity (SC) obtained from diffusion tensor
imaging (DTI) or similar techniques. In the model, the global pattern of
FC arises from the local variability Σi (for node i, 1 � i � N) that prop-
agates via the network connections ECij (from node j to node i, 1 � i � N,
1 � j � N, i 6¼ j). To fit each fMRI session, all relevant ECij and Σi pa-
rameters are iteratively tuned such that the model spatio-temporal FC
—as measured by FC0 (no temporal lag) and FC1 (covariance with
temporal lag of 1 TR), see Eq. (1) in Methods— best reproduces the
empirical counterpart. A detailed description of the model and the esti-
mation procedure is provided in Methods. In essence, the model inver-
sion decomposes the empirical matrices (FC0, FC1) into two estimates EC
and Σ, which can be seen as multivariate biomarkers for the brain dy-
namics in each fMRI session.

Dataset A (A1þA2) was used to test the robustness of subject iden-
tification in session-to-session variability. Dataset B was used to test the
generalization capability of the identification procedure for a larger
number of subjects. Dataset C was used to extract both individualized and
behavioral signatures. After applying a standard preprocessing pipeline
to the BOLD signals for Datasets A and B, we parcellated the brain into
116 regions of interest (ROIs) according to an anatomical space (see
Fig. 1A). Likewise, Dataset C was parcellated into 66 ROIs covering the
cortex. See Section 4.1 in Methods for details.

Structure of individual session-to-session variability for EC and FC

Before considering classification, we examined the distributions of
connectivity measures extracted from repeated scans for individual
subjects. Using Datasets A and B, we compared the capability of the 4
connectivity measures (corrFC, FC0, FC1 and EC), as well as Σ, in terms of
within- and between-subject similarity (WSS and BSS, respectively), as a
first step toward subject identification. For each pair of sessions, the
similarity SX was calculated using the PCC between two vectorized
connectivity measures X in Fig. 1C (non-zero elements for EC, low-
triangle elements for corrFC). In the matrix of SEC values for Dataset
bject number Sessions per subject Session duration

40–50 5min
1 5min
10 10min
3 (rest) and 2 (movie) 10min



Fig. 1. Workflow for the calculation of the connectivity measures from fMRI measurements. A) After a standard pre-processing pipeline, a parcellation covering
the whole-brain is applied to extract BOLD time series: 116 ROIs for the AAL parcellation used here and 66 ROIs for the Hagmann parcellation, with each color
representing an anatomical subsystem of several ROIs. Here we consider two versions of functional connectivity: the classical corrFC corresponding to the Pearson
correlation coefficient (PCC) between pairs of time series; the spatiotemporal FC embodied by the two covariance matrices FC0 and FC1 without and with time shift,
respectively. Details are provided in Methods, see Eq. (1) and Eq. (2). B) Whole-brain network model to extract effective connectivity (EC) from fMRI measurements.
The local fluctuating activity (where Σi is the variance of the input to each region i) propagates via the recurrent EC to generate the correlation patterns at the network
level. Structural connectivity (SC, bottom) obtained using DTI determines the skeleton of EC. The fitting procedure iteratively tunes EC and Σ such that the model best
reproduces the empirical FC0 and FC1. Details are provided in Sections 4.2.2 and 4.2.3. C) Each corrFC matrix is symmetric and has all diagonal elements equal to 1, so
that only 6670 independent links are retained for identification/classification (lower triangle). Likewise, the EC matrix has 4056 non-zero elements that are used in the
classification (density of 30%).
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A1 (Fig. 2A), 6 diagonal blocks with larger values corresponding to the
WSS can be noticed; the remaining matrix elements correspond to BSS.
Fig. 2B compares the distributions of SEC and ScorrFC: WSS and BSS dis-
tributions are better separated for EC than for corrFC. In other words,
sessions from the same subject are more similar to one another, and more
different from those of other subjects, viewed from the EC than the
corrFC perspective. This suggests a better capability for EC to discrimi-
nate between subjects. Note that the BSS from Datasets A1 (6 subjects)
and A2 (50 subjects) remarkably overlap for both corrFC and EC,
showing that BSS for 6 subjects generalizes well to larger numbers.

These qualitative observations are confirmed by Table 2 that
240
summarizes the Kolmogorov-Smirnov (KS) distance between the simi-
larity distributions (blue versus red and blue versus green in Fig. 2B). We
used the KS distance between the distributions because the number of
WSS and BSS values were different. EC gave larger KS distance than
corrFC and all other FC-related measures. We also calculated KS distance
using only the links in corrFC and FC0 corresponding to the 4056 existing
connections in EC (determined by SC), in order to compensate for the
relative sparsity of EC links as compared to corrFC and FC0; however, this
did not change the results. Note that our version of vectorized FC0 does
not involve variances (diagonal elements). In contrast, the calculation of
each element corrFC values incorporates the variances, describing the



Fig. 2. Within- and between-subject similarity (WSS and BSS, respectively) for EC and corrFC.A) Matrix of similarity values SEC between all pairs of sessions
from Dataset A1. EC matrices from all sessions are transformed into vectors (see Fig. 1C), from which the PCC is calculated to obtain SEC for all pairs of sessions (see Eq.
(12) in Methods). Here the sessions are grouped by subjects, as indicated by the colored symbols. B) The left panel shows that distributions of WSS (blue) and BSS (red)
values for Datasets A1 —corresponding to diagonal and off-diagonal blocks in panel A, respectively— and of BSS (green) for Dataset A2. The right panel shows the
corresponding distributions for corrFC. The above error bars represent the means and standard deviations, indicating a smaller overlap between WSS and BSS for EC.
C) Visualization of the sessions of Dataset A1 in the space of the first 6 principal components, or PCs (split into the left and right panels), obtained from PCA for EC (top
row) and corrFC (bottom row). Each point corresponds to a session and each color to one of the 6 subjects, as in panel A. D) Silhouette coefficients of each session in
panel C. Sessions with value close to 1 are well clustered and those close to �1 are poorly clustered; see Eq. (15) in Methods for further details. E) Distribution of the
silhouette coefficients for EC (top panel) and corrFC (bottom panel): comparison between the original link space (left) and the PCA space (right, curve in red cor-
responding to top panel in D). Both Datasets A1 (6 subjects with 6 PCs, in red) and B (30 subjects with 30 PCs, in blue) are represented by the violin plots; see also
Figure S3 about the choice for the number of PCs. Note the larger silhouette coefficients for EC than for corrFC.

Table 2
Kolmogorov-Smirnov (KS) distance between WSS and BSS distributions. Com-
parison of the connectivity measures (corrFC, FC0, FC1) and model estimates
(EC, Σ). The third column corresponds to the distance between the blue and red
distributions in Fig 2B, and the fourth column to the blue and green distributions.

Measure Description Dataset
A1

Dataset A1 &
A2

EC EC weights estimated with the model 0.6440 0.6581
corrFC FC computed as Pearson correlation 0.4517 0.5477
FC0 FC computed as 0-lag covariance matrix 0.3685 0.4888
FC1 FC computed as 1-lag covariance matrix 0.4139 0.5118
corrFC/
SC

FC as Pearson correlation and masked
with SC

0.4769 0.5729

FC0/SC FC as 0-lag covariance matrix and
masked with SC

0.3770 0.4644

Σ Local variability for each ROI estimated
with the model

0.3778 0.3287
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ratio of covariance with respect to the variances of the two nodes; see Eq.
(2). This appears to enhance the information content of corrFC compared
to FC0. Lastly, the diagonal elements of Σ showed the smallest distances.
In the following, we focus on EC and corrFC. Supplementary Figures S1
and S2 show the similarity distributions for FC0, FC1, corrFC/SC and Σ
using Datasets A1 and B.

The high dimensionality of our connectivity measures may reduce
their predictive power, known as the Hughes phenomenon (Hughes,
1968). This is especially important in our case where the number p of
dimensions for the multivariate measures (Dataset A1: p ¼ 4056 for EC,
p ¼ 6670 for corrFC) exceeds the number n of samples (n ¼ 6 subjects �
50 sessions¼ 300 samples). To further characterize individual variability
over sessions, we performed a reduction of dimensionality using a prin-
cipal component analysis (PCA) on the sessions of Dataset A1. To the
naked eye, the colored clouds representing all sessions for each subject
exhibit smaller overlap for EC than corrFC in Fig. 2C, where data are
projected onto the first 6 principal components (PCs).
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We quantified the clustering degree of these clouds using a silhouette
coefficient for each session, ranging from �1 for poor clustering to 1 for
perfect clustering (Rousseeuw, 1987); see Section 4.3.3 in Methods. As
shown in Fig. 2D, EC produced larger (almost all positive) silhouette
values than corrFC, confirming the visual impression of Fig. 2C. Silhou-
ette coefficients were calculated on the data projected onto the first
6 PCs, i.e. the number of PCs that maximized the silhouette coefficient
(see Supplementary Figure S3). As can be seen in Fig. 2E, the silhouette
coefficients for the data in the original link space (left violin plots) are
smaller than those for data in the PCs space (right); for Dataset B (in
blue), the first 30 PCs are used. Consequently, PCA may facilitate the
identification of subjects by reducing the dimensionality of the data, but
this has to be properly tested.
Subject identification using EC is more robust than using FC

Now we turn to the main goal of our study: the classification of single
sessions based on EC or corrFC. In this section, we start with attributing
sessions to subjects. Subject identification for a large cohort (� 100
subjects) was recently pioneered (Finn et al., 2015), relying on a
k-nearest-neighbor (kNN) classifier with k ¼ 1 and PCC as metric. In
order to classify a target session, the PCC between the target and 1 known
reference session for each subject (called database) is calculated; the
predicted identity for the target is that of the subject corresponding to the
closest (most similar) session (see Supplementary Figure S4 and Methods
for details). In contrast with previous studies using 1NN (Finn et al.,
2015, 2017; Kaufmann et al., 2017), our method relies on a multinomial
logistic regression (MLR) classifier, a classical tool in machine learning.
MLR uses a linear model to predict the probability that an input sample
belongs to a class (subject here). A technical comparison of both ap-
proaches is further detailed in Methods (Section 4.3.5).

In classification algorithms the problem of overfitting describes the
situation where the algorithm performs very well with the data it is
trained with, but fails to generalize to new samples. Due to the high
dimensionality of the connectivity measures (Hughes, 1968), it is
essential to control for overfitting with an appropriate training and test
procedure. Our train-test procedure and the use of large test-retest
datasets —unlike previous studies (Finn et al., 2015, 2017; Vanderwal
et al., 2017)— aims to improve the understanding of the classification
performance by considering other classifiers and larger train-test sets.
Fig. 3A describes the train-test procedure for the identification of
subjects:

� fMRI sessions (EC in the figure) are randomly split in training (orange
square) and test (blue square) datasets;

� after preprocessing, involving within-session z-score (to obtain a
normalized ranking of the EC/corrFC vector values, see Section 4.3.4
in Methods for details), an additional step with PCA can be applied;

� when PCA is used (dark arrows), the high-dimensional z-scored
vectors are projected into a space of lower dimensionality determined
by a given number of PCs (others are discarded), the classifier is
applied directly to the data in the original space (light arrows);

� the classifier is then optimized, as illustrated for the MLR with
boundaries that best predict the training dataset;

� the test set is used to verify the generalization capability of the clas-
sifier (blue arrows), by measuring to which extent the classifier
boundaries, estimated with the train set, correctly classify single
sessions from the test set.

We first used Dataset A1 and increased the number of training ses-
sions per subject from 1 to 40 to evaluate how many training sessions are
necessary for satisfactory accuracy. As shown in Fig. 3B, EC (in red)
outperformed corrFC (in blue) by more than one standard deviation
(shaded area around the curve), for both MLR and 1NN. For both clas-
sifiers, the Mann-Whitney test over 100 repetitions gives a p-value <
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10�11 until 10 sessions for the superiority of EC. Moreover, almost perfect
classification was reached with MLR for only 5 training sessions, whereas
10–15 were necessary for 1NN. This is important when only a few
training sessions per subject are available, as expected with clinical ap-
plications. Fig. 3C displays the classification accuracy for Dataset B, used
to verify the robustness with respect to the number of subjects to be
classified. We trained the classifiers with 1 session per subject and
evaluated the performance varying the number of subjects from 2 to 30
(test set comprised the remaining 9 sessions per subject). Again, EC is
more robust than corrFC: While performance with corrFC rapidly de-
teriorates as the number of subjects is increased, classification using EC is
barely affected by the number of subjects. Again, the Mann-Whitney test
over 100 repetitions gives a p-value < 10�5 in all cases (more than two
subjects). This is our core technical result: EC and MLR largely outper-
form corrFC and 1NN, respectively. Other connectivity measures such as
FC0 showed similar performance to corrFC (not shown).

PCA is a preprocessing step commonly used in machine learning to
remove noise while keeping the dimensions that capture most of the
variability of the data. Using it assumes that the largest part of the data
variances captures the relevant information for the classification. Unlike
with the analysis of the data structure (Fig. 2E), PCA only marginally
increased the classification performance here (Supplementary Figure S5).
The difference with Fig. 2E may be explained because here PCA can only
be applied to the train set. Another possible reason is that the classifi-
cation accuracy is already very high with 95% for MLR and EC with 1
training session. As shown in Supplementary Figure S6, the performance
of the classification with PCA increases with the number of PCs until
saturation, which indicates the point when subsequent PCs contain
redundant or irrelevant information for the classification. As further
discussed in Supplementary Figures S7 and S8, subject-specific infor-
mation is conveyed by many PCs, corresponding to a rather large sub-
space of the EC links. This supports the use of proper machine learning
tools to extract this distributed information.
Signature network of links supporting the classification

Another important advantage of the MLR over kNN is its efficiency in
characterizing the links that contribute to the classification. This can be
used to extract signatures related to a givenmodality, as we show now for
subject identification. In contrast to the previous section were all links
are used as features in the classification, recursive feature elimination
(RFE) can be used to rank the links according to their weight in the
classification, giving the lowest number of links for which the MLR
achieved the maximum classification performance; see Methods for de-
tails (Section 4.3.6). As mentioned above, RFE is particularly adapted to
the MLR classifier: the same procedure with kNN would require many
more computations, recalculating the closest neighbor for all combina-
tions of links (here the number of links is p > 1000; see Methods for
further arguments). A last technical point here is that RFE is used without
cross-validation, using the full dataset as train set. The support network
obtained using RFE on Dataset A1 had 18 links, compared to 44 links for
Dataset B. In both cases, subject identification using only those links
achieved perfect accuracy (90% of all available sessions were used for
training and 10% for testing, see Supplementary Figure S9). The two
support networks are shown in Fig. 4A in the same matrix: Remarkably,
the networks are very sparse and non-uniformly distributed across the
whole brain. This is the signature of the most subject-discriminative
ROIs: Frontal and cingulate cortices, as well as the temporal and occip-
ital regions, seem to play a major role here. It is worth noting that the EC
adjacency matrix is not symmetric, which implies different roles for
nodes as receivers (especially frontal ROIs) or senders (cingulate).

The sparsity of the signature in Fig. 4A hides the fact that the rankings
for Datasets A1 and B are close (PCC¼ 0.59, p-value≪ 10�50), indicating
that similar links convey information about the identity of subjects.
Fig. 4B shows the remarkable correspondence of the mean RFE ranking of



Fig. 3. Comparison between EC and FC in subject identification. A) Classification pipeline used to assess the generalization of performance. The full set of
connectivity measures (here EC) over all fMRI sessions was split into two groups: a train set and a test set. We use z-scores calculated over the elements of each session
matrix; see Eq. (16) in Methods for details. We trained the classifier —with or without previously applying PCA— and evaluated the classification accuracy on the test
set. Details about the algorithms are given in Section 4.3.5. B) Performance of multinomial logistic regression (MLR, left panel) and 1-nearest-neighbor (1NN, right
panel) classifiers when increasing the number of sessions per subject used as training set with Dataset A1. The mean (solid curve) and standard deviation (colored area)
were calculated for 100 folds of randomly-split train-test sets (the number of sessions per subject for the training set is indicated by the value of the x-axis; the test set
comprised all remaining sessions). C) Same as B when varying the number of subjects using Dataset B, using a single training session per subject (leaving 9 sessions per
subject as test).
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Fig. 4. Support network of EC links to identify subjects and generalization capability. A) Extracted links that contribute to the classification for Datasets A1 and
B, obtained using recursive feature elimination (RFE). The ROIs are grouped in anatomical pools, as detailed in Supplementary Table S1. B) Average RFE ranking over
the ROI anatomical pools in A. Darker color indicates more important links for the classification. C) Overlap between the two signatures for Datasets A1 and B as a
function of selected links. The curve represents the amount of common links in the data. Shaded areas represent different quantiles of the surrogate distribution of
common links under the null-hypothesis of random rankings. The color of the curve indicates the probability of the corresponding amount of common links under the
null-hypothesis (here p-value ¡ 0.001 when considering more than 1% of the total links, namely 40 links). D) Extrapolation of the size of the support network in A for
Dataset B when increasing the number of subjects up to 1000 (x-axis), for 10 repetitions. The shaded area corresponds to 10 repetitions. The curves compare three
approximations, the best one displayed in orange (as indicated by the fitting error SSE) corresponds to a sublinear power law (exponent equal 0.6). E) Same as D for
the accuracy based on EC. The plotted data points correspond to EC in Fig. 3C and the variability to 100 repetitions. The best approximation also corresponds to a
power law (in orange), which is very close to a lognormal relationship.
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EC connections for Datasets A1 and B, where the source and target ROIs
are grouped anatomically (in color in Fig. 4A). This confirms that the two
corresponding signatures coincide at the subnetwork level. Compared to
previous studies that based classification on parietal and frontal regions
(Finn et al., 2015), we found that temporal and occipital regions are
discriminative. An explanation for this difference may lie in that EC
consists of directional links and may capture more refined information
than FC. To further measure the overlap between these networks, we
selected the subset of links with the highest ranking for each dataset and
computed the number of common links. Fig. 4C shows that the propor-
tion of common links exceeds by far its expectation under the hypothesis
of random rankings (shaded gray area). This indicates a good agreement
between the support networks from the two datasets even at the
single-link level.

Expecting the size of the support network in Fig. 4A to grow with the
number of subjects, we quantified it using Dataset B and found a sub-
linear relationship, as illustrated in the log-log plot of Fig. 4D. The
extrapolation to 100 and 1000 subjects gave network sizes of 53 and 200
links, the latter corresponding to 5% of the total number of EC links (i.e.,
the signature remained sparse). Likewise, we fitted a curve to predict the
EC-based accuracy when increasing the number of subjects (see Fig. 4E),
which gave 92% and 88% for 100 and 1000 subjects. These results
implied that the complexity of EC biomarkers related to individual
variability should not “explode”, which is good news for the general-
ization capabilities of EC.

Twofold classification of subject identity and behavioral condition

Using another dataset, we used the knowledge gained from the sub-
ject identification to reach our final objective, the extraction of several
signatures corresponding to distinct modalities and the evaluation of the
overlap between them. From sessions in Dataset C, We extracted a
signature for the subject identity and another for the behavioral condi-
tion. The twofold classification is schematically depicted in the left panel
of Fig. 5A, with three fictive dimensions: The information about subject
identity corresponds to the horizontal axis and information about the
condition to the vertical axis; The session-to-session variability, which
should be ignored, spreads along the depth axis. In this idealized sce-
nario, it is possible to classify a session with respect to both subjects and
conditions using different dimensions of the data (middle panel). In the
high dimensional case, this occurs when different sets of links support the
two classifications. In contrast, the two signatures may involve over-
lapping subsets of links, corresponding to non-orthogonal axes (right
panel) for which the condition “score” for classification (projection on
axis) also involves individual information.

MLR with EC achieved very high performance (accuracy > 90%) for
subject identification and perfect classification for the condition. For
condition classification the samples are grouped, i.e. some fMRI sessions
for each condition come from the same subject, so predicting the class for
an out-of-sample subject is in principle more difficult than for subjects
present in the training set (Poldrack et al., 2009). In our case we found no
difference between standard random permutation cross-validation and
leave-one-group-out cross-validation: both provide perfect classification
of the conditions. We then sought the smallest subsets of links that
achieved the maximum performance of each classification using RFE
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(Fig. 5B), as done before (seeMethods for details). Both support networks
were again very sparse and distributed across the brain, as can be seen in
their adjacency matrix (Fig. 5C). More links are necessary to identify the
subjects (57) than the behavioral conditions (13), indicating a higher
complexity for the former.

To quantify the overlap between the signatures, we computed the
number of common links supporting both subject and condition identi-
fications, when increasing the two subsets according to the order given
by RFE as before in Fig. 4C. The overlap fell within the expected values
for the null hypothesis up to 30% of all links, as illustrated in Fig. 5D. This
indicated that distinct subsets of links were relevant for the subject
identities and behavioral conditions, ensuring the “orthogonality” of the
two signatures for this dataset. In addition, the few links in common
could be removed and replaced by further links in the RFE ranking to
further disentangle the signatures. In any case, this suggested a good
generalization property of the multivariate signature extraction for
several modalities, in the sense that disjoints subsets of links can support
the classifications. This application further demonstrated the above
mentioned advantage of the MLR classifier equipped with RFE: Working
in the original space of links allows us to identify the most discriminative
links individually, as well as combinations of them in a subsequent step.
In contrast, PCA-like approaches gives PCs corresponding to linear
combinations of many links, making it difficult to interpret results at the
level of single links.

Another implication of the non-orthogonality of signatures in the
right panel in Fig. 5A is that noise in EC estimates may induce correlated
errors in the two classifications. To test this idea, we compared the errors
of the two classifiers compared to the perfect outcome (probability of 1
for the correct class and 0 for others). We found that the two classifiers
for the support networks in Fig. 5C had uncorrelated errors, with a high
p-value in Fig. 5E. This further confirmed that the selection of only a few
links to support the signature classifiers preserved a twofold classification
without bias between the two modalities.

Last, we compared the topological properties of the support net-
works in Fig. 5C, interpreting the most discriminative EC links
extracted using the MLR with RFE as graph. These directed networks
are represented in the top panels of Fig. 6 (A for subject and B for
condition). The 66 ROIs are colored to indicate the brain subsystem
they belong to and the directed nature of links can be appreciated by
zooming. Similar to Datasets A1 and B, subject identification of
Dataset C largely concerned the frontal and cingulate systems. Con-
dition identification was also supported by occipital and temporal
cortices, which were found to have the strongest activity modulations
during movie viewing (Gilson et al., 2017). Because we only consid-
ered two tasks, it was somehow expected that the task network would
be much simpler than the support network for the 19 subjects. How-
ever, these two support networks also corresponded to distinct types of
graphs: The subject network had a large connected component with
several central nodes (hubs, indicated by their large size), located in
frontal and cingulate regions, in addition to two small components. In
comparison, the condition network was segregated into 8 small iso-
lated components. This suggested that elaborate collective dynamics
involving high-level ROIs differed across subjects, which might be
used as a biomarker to examine its relationship with individual
cognitive traits, as was done with FC (Finn et al., 2015).
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Fig. 5. Twofold discrimination between subjects and conditions using EC. A) The left panel represents an idealized scheme of the twofold classification where the
biomarkers for all sessions (colored symbols) are projected onto two subspaces, one for subjects (orange versus blue) and one for conditions (squares versus stars). The
middle and right panels compare the situations where the subspaces (here axes) are orthogonal or not, respectively. In both cases, the dashed separatrices correspond
to perfect classification. In the right panel, however, the condition “score” (projected value) mixes information about subjects, as indicated by the non-overlapping
solid and dashed distributions. B) Performance of the classification for 19 subjects and 2 conditions using Dataset C as a function of number of links. Note the distinct
scales for the y-axis, because the subject identification is a harder problem. C) Signatures of the most discriminative EC links (estimated with RFE, see text for details)
for the twofold classification in B: 54 links for subject classification in brown, 10 for condition classification in blue, 3 common links in red. The ROIs are grouped in
anatomical pools, as detailed in Supplementary Table S2. D) Proportion of common links between the subject and condition signatures as a function of selected links
(in the order of the RFE ranking). Color coding is the same as in Fig. 4B: the two signatures are significantly different, i.e., with a number of common links corre-
sponding to the null hypothesis with p-value � 0:05 (cf. legend) with up to 4% of the total links. E) Error of the subject and condition classifiers using the links of the
support networks in C. The plotted dots represent the 95 sessions. The classifier errors are not correlated, as indicated by the Pearson correlation and corresponding
p-value.
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The bottom plots in Fig. 6 show the lateralization of the support links,
stressing the asymmetries between the two hemispheres: Most of the
important links are ipsilateral (i.e., within the same hemisphere) and
many belong to the left hemisphere for the subject network, whereas they
are mainly contralateral for the condition network. This is also in line
with strong inter-hemispheric interactions observed during movie
viewing for the same dataset, but relying on community analysis (Gilson
et al., 2017). This shows that the non-overlap between the signatures is
Fig. 6. Support networks of subject and condition classification. A) The top gra
supporting the classification of subjects (same as in Fig. 3C). The color of the circle
connection in the extracted networks. The size of each node represents its betweenne
the frontal and cingulate cortices. The bottom circular plot shows the asymmetry an
Links that are inside the circle correspond to contralateral connections, while link
indicated by the color of the source node (i.e. a blue line indicates an interaction from
links supporting the classification between the two conditions (rest versus movie
discrimination: they form a network with many disjoint components and are mainly
color for each link corresponds to its source ROI.
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not only quantitative, but also qualitative in the sense that these signa-
tures involve distinct types of links.

Discussion

In this study, we have proposed a framework to extract signatures
related to various modalities from fMRI data, allowing for a quantifica-
tion of the interference between signatures. The twofold classification of
ph plot represents the 66 ROIs or nodes and the 57 most discriminative EC links
s indicates the corresponding anatomical brain; it is dimmed for nodes with no
ss centrality in the extracted network, with most central regions being located in
d lateralization of the network, with more links located in the left hemisphere.
s outside the circle correspond to ipsilateral connections. The link direction is
a blue node to another node). B) Similar graph and circular plots as A for the 13
viewing). Fewer links are required to reach high accuracy in the condition
contralateral, in comparison to the subject classification support network. The
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subjects and behavioral conditions goes beyond previous studies that
used FC as a “fingerprint” (Miranda-Dominguez et al., 2014; Finn et al.,
2015; Calhoun et al., 2017; Finn et al., 2017). It is precisely because fMRI
signals are dominated to some extent by individual traits (Finn et al.,
2015) that a proper multivariate classification is necessary. In particular,
we have shown how machine-learning tools such as the MLR enable a
quantification of the topological orthogonality between signatures, in
addition to efficiently extracting them. Our study also demonstrates that
signatures based on EC are very robust to session-to-session variability
(much more than with FC) and can be obtained relying on a limited
number of sessions, namely 4–5 recording sessions (of 5 min each) to
classify 40þ other sessions. This corresponds to a train-test ratio of
10–90, which is unusual low; in contrast, most studies use ratio above
50-50, which raises concerns about generalization capabilities (Varo-
quaux et al., 2017). Our method yields consistent results for fMRI data-
sets collected using different scanners and preprocessed with different
pipelines, which further supports its general scope. Taken together, our
results define a solid ground to scale up the multivariate classification to
larger datasets with more subjects and tasks. We now discuss specific
points.

We found that very sparse signatures (a few % of all EC links) are
sufficient to obtain perfect classification because of the datasets we used,
which involved 30 subjects maximum and 2 conditions. The size of the
corresponding support networks (Figs. 4A and 5C) is expected to increase
with the complexity of the “environment” to be represented, with more
subjects and tasks. Open-access resources are becoming available to
quantitatively test the framework on larger scales (Zuo et al., 2014;
Gordon et al., 2017). An encouraging result for the generalization
capability of EC is the sublinear dependency of the signature size with the
subject number (Fig. 4D). The sparsity of signatures means that the
complexity of the variability of EC biomarkers remains “controlled” in
the sense that it can be described using a number of dimensions much
smaller than the numbers of elements in the corresponding modality
(here subjects or conditions).

The support networks for the twofold classification (subject and
condition) show several noticeable differences (Fig. 6). The subject
network is large, almost fully connected, distributed over the two
hemispheres (with more links within the left one) and concentrated in
the cingulate and frontal areas. This suggests the presence of subject-
specific dynamics between areas involved in high-level functions and
overlapping with the default mode network (Raichle et al., 2001). These
discriminative EC patterns may reflect heterogeneities in the interactions
between the different neural subsystems (e.g., cingulate to frontal in
Fig. 5C) and the propagation of information between them (Ekstrom,
2010; Engel et al., 2013). As expected with the movie viewing condition
studied here, links in the visual and temporal areas are discriminative. In
addition, we also found a much higher percentage of contralateral links
for condition than subject. This suggests that EC-based biomarkers may
also be interpreted in terms of brain communication as was shown
recently (Gilson et al., 2017; Senden et al., 2017), beyond simply sup-
porting the classification.

A fundamental advancement of our study is the development of a
reliable and well-benchmarked method, extending previous proofs of
concept for subject or condition identification (Poldrack et al., 2009;
Miranda-Dominguez et al., 2014; Finn et al., 2015; Gonzalez-Castillo
et al., 2015). Our core technical result is that (whole-brain) EC discrim-
inates subjects better than corrFC (Fig. 2 and Fig. 3), which is used in the
vast majority of previous studies (Finn et al., 2015, 2017; Kaufmann
et al., 2017; Calhoun et al., 2017; Varoquaux et al., 2017; Woo et al.,
2017; Xie et al., 2017; Drysdale et al., 2017). The generalization capa-
bility of EC is much more robust than FC when the classification becomes
harder (many subjects to identify with few sessions per subject,
Fig. 3B–C). This confirms that the BOLD temporal structure —captured
by the EC after the bandpass filtering of the BOLD signals— reflects the
identity of the subject (Miranda-Dominguez et al., 2014), as previously
shown for a task involving attention (or not) (He, 2011) or for wake
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versus sleep (Mitra et al., 2015). The use of z-scores in the classification
shows that the EC ranking (i.e., which brain connections have large
weights among all) conveys the relevant information. This is also in line
with our previous studies (Gilson et al., 2017; Senden et al., 2017) that
showed how changes in task-evoked fMRI activity is captured by
whole-brain EC. Moreover, the directed nature of EC reflects the propa-
gation of BOLD signals and can be interpreted in terms of brain
communication. Our results thus support a change in biomarkers used for
multivariate classification, where EC unfolds the relevant information of
BOLD signals in a suitable space. Here the focus was on EC because it
performed better than Σ estimates for the resting-state fMRI, but it has
been shown that Σmay be strongly affected by tasks (Gilson et al., 2017),
so Σ might further improve the classification for conditions, reflecting
sensory stimuli.

On the machine learning side, our results show that the MLR classifier
performs better than the 1NN (Fig. 3B–C), even though the accuracy is
good for both. Note that this also holds for kNN with k � 2 (results not
shown). This suggests that the EC/FC pools related to subjects/conditions
are linearly separable in their high dimensional spaces, in a even easier
manner for EC (related to the better performance). Unlike the kNN
classifier (Finn et al., 2015), the MLR discards uninformative links with
little reliability to discriminate the desired modalities, so taking
whole-brain EC with many dimensions (links) without a-priori selection
is not an issue. Even though the MLR achieves a very good performance
without regularization, the latter is an interesting direction to explore in
the future to obtain various types of signatures (e.g., more or less sparse).
In addition, we have shown how RFE can be used to extract signatures
and assess the orthogonality between them as it provides access to the
link-level contributions to classification (Fig. 5D–E). Therefore, the
multivariate classification can be implemented using distinct subsets of
links, discarding those that mix several modalities. Note that RFE is used
without cross-validation here (because of the computation speed),
separating the evaluation of the ranking of the EC links from the gener-
alization capability of the MLR. Together, our results underline the
importance of adequate machine learning tools to obtain a powerful and
flexible framework that can scale up with the complexity of modalities.

Formally, our whole-brain dynamic model is a continuous-time
network with linear feedback that incorporates topological constraints
from SC. EC is estimated using a gradient descent (or Lyapunov optimi-
zation) that takes into account the network feedback and can be very
efficiently calculated for the whole brain with 100 ROIs and each session
with 300 time points per ROI (Gilson et al., 2016, 2017). Each session
gives a parameter estimate (for each EC link), whose distributions across
subjects and conditions are used for classification. Our dynamic model
and estimation procedure are simpler than the dynamic causal model
with hemodynamics and Bayesian machinery (Friston et al., 2003; Ste-
phan et al., 2004), which has been used for classification relying on a few
ROIs only (Brodersen et al., 2011). Nonetheless, they provide powerful
signatures in a much richer (high-dimensional) space that can be used for
modality discrimination. Our study focused on two coarse parcellations
covering the whole brain (Tzourio-Mazoyer et al., 2002) or cortex
(Hagmann et al., 2008). Although the two parcellations were applied to
different datasets, we did not observe significant difference in the per-
formance of the classifiers. Much work has been done recently to correct
the bias due to the use of specific parcellations (Da Mota et al., 2014); for
our purpose, more refined parcellations may entail better discrimina-
bility in higher-dimensional spaces, but raise issues for the EC estimation
robustness. This motivated us to choose rather coarse parcellations with
large ROIs as a first step. We have used a generic SC with 30% density,
ensuring a sufficiently rich potential biomarker with thousands of esti-
mated EC links in total. Inaccuracies about SC may affect some % of all
links, but this is unlikely to hardly affect the collective predictive power
of EC. Moreover, preprocessing using PCA was surprisingly found to have
very little influence on the performance. Nonetheless, PCA may be useful
for datasets with larger number of subjects and conditions (Preti et al.,
2017). We also tried the classification procedure with additional global



V. Pallar�es et al. NeuroImage 178 (2018) 238–254
signal regression of the BOLD signals and results were similar in terms of
performance. Although refining the preprocessing pipeline may improve
the (already excellent) classification performance, we expect EC to
perform better in general.

Applications of neuroimaging to characterize brain disorders at the
patient level are emerging (Matthews and Hampshire, 2016; Yahata
et al., 2017). The development of personalized medicine with tailored
therapeutic protocols (Shen, 2014)—to optimize recovery and minimize
adverse effects— requires quantitative tools that deliver a precise diag-
nostic of the patient's evolution. Our proposed scheme is to follow a
patient's trace over time in the (high-dimensional) EC space: Extending
the diagram in Fig. 5A, the classification should involve a 4-dimensional
space (session-to-session variability to discard, subject, task and pathol-
ogy), the latter dimension corresponding to healthy versus pathological
states. Here the goal of the multivariate signatures is to ensure that the
pathology one is not “contaminated” by other modalities. One (or
several) pathology-specific signature(s) would be extracted from
resting-state (Greicius, 2008) or task-evoked fMRI, as specific tasks may
indeed reveal powerful signatures for certain pathologies, e.g., memory
exercises for Alzheimer (Kurth et al., 2015). We expect our framework to
bridge the gap between the two types of recent approaches that dealt
with either side of individual traits, but not both at the same time: 1) A
recent prospective study on the evolution of psychiatric disorders
emphasized individual specificities in the FC stabilization during child-
hood (but irrespective of the disease) (Kaufmann et al., 2017); 2)
Group-averaging is often used to ignore the individual differences and
obtain pathology-specific signatures (Drysdale et al., 2017). The gener-
alization capability of prediction methods to future (unseen) data
(Hughes, 1968; Calhoun et al., 2017; Varoquaux et al., 2017; Woo et al.,
2017) is crucial in this clinical context. A further step concerns the
transfer of biomarkers across datasets (Rahim et al., 2017). To this end,
our method appears suitable for disentangling diverse signatures, while
properly conditioning out the day-to-day fMRI variability (as uninfor-
mative intrinsic noise). This provides a practical solution to the recent
criticism that “a major reason for disappointing progress of psychiatric
diagnostics and nosology is the lack of tests which enable mechanistic
inference on disease processes within individual patients” (Stephan and
Mathys, 2014).

Methods and materials

Description of fMRI datasets

Three datasets acquired at different locations were used in this work:

� Dataset A was acquired for the Day2day project (Filevich et al., 2017)
at the Max Planck Institute for Human Development (Berlin, Ger-
many) of 40–50 resting-state sessions recorded from the 6 subjects
over 6 months. The uniqueness of this data lies in the capability to
have statistically valid evaluation of the session-to-session variability
for single subjects.

� Dataset B is publicly available and is part of the Consortium for
Reliability and Reproducibility (CoRR) (Zuo et al., 2014). We used
this dataset to generalize the results of the discriminability when
increasing the number of subjects (up to 30 subjects).

� Dataset C (Mantini et al., 2012) was recently analyzed using our
model-brain dynamic model to extract effective connectivity (Gilson
et al., 2017). We used it to perform a twofold classification with
respect to both subjects and conditions (resting-state versus movie
viewing).

In this section, we provide details about the acquisition of the blood-
oxygen-level dependent (BOLD) signals for the three datasets.

Dataset A
This dataset has two parts. The first part (A1) is longitudinal and
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consists of resting-state fMRI sessions from 8 subjects (age 24–32, 6 fe-
male). 2 subjects (one male, one female) were not able to continue the
study and were discarded. The other 6 subjects underwent scanning
between 40 and 50 times along a period of 6 months. The second part of
the dataset (A2) was acquired during the same period of time. A total 50
subjects (age 18–32, all female) were scanned during a single fMRI ses-
sion each using the same MRI sequences. Participants were free of psy-
chiatric disorder according to a personal interview —mini-international
neuropsychiatric interview (Sheehan et al., 1998)— and had never suf-
fered from a mental disease. The study was approved by the local ethics
committee (Charit�e University Clinic, Berlin). Participants were
instructed to remain with their eyes closed and data acquisition had to be
constrained to 5min per scan due to experimental limitations.

Images were acquired on a 3 T Magnetom Trio MRI scanner system
(Siemens Medical Systems, Erlangen, Germany) using a 12-channel
radiofrequency head coil. Functional images were collected using a
T2*-weighted echo planar imaging (EPI) sequence sensitive to BOLD
contrast (TR ¼ 2000 ms, TE ¼ 30 ms, image matrix ¼ 64� 64, FOV¼
216� 216� 129 mm3, flip angle¼ 80�, bandwidth¼ 2042Hz/pixel,
voxel size¼ 3� 3� 3 mm3, 36 axial slices using GRAPPA acceleration
factor. Structural images were obtained using a three-dimensional T1-
weighted magnetization-prepared gradient-echo sequence (MPRAGE)
based on the ADNI protocol (www.adni-info.org): repetition time
(TR)¼ 2500ms; echo time (TE)¼ 4.77ms; TI¼ 1100ms, acquisition
matrix¼ 256� 256� 192 mm3, flip angle¼ 7�; bandwidth¼ 140Hz/
pixel, 1� 1� 1 mm3 voxel size.

Pre-processing. The data was preprocessed using SPM5 (Wellcome
Department of Cognitive Neurology, London, UK) and DPARSF/DPABI
(Yanetal., 2016) after discarding thefirst 10 volof eachsession. It included:
slice timing and head-motion correction (6 parameters spatial trans-
formation), spatial normalization to the Montreal Neurological Institute
(MNI) template, and spatial filtering of 4mm FWHM. Linear trends were
removed from the fMRI time courses before band-pass filtering
(0.01–0.08Hz). The data was parcellated using the automated anatomical
labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002) into 116 regions of in-
terest (ROIs), which includes the whole cortex and the cerebellum.

Dataset B
This dataset consists of 10 fMRI resting-state sessions acquired from

30 healthy participants every three days for one month (Zuo et al., 2014).
Each session lasted 10min. To minimize head movement, straps and
foam pads were used to fix the head snugly during each scan. The par-
ticipants were instructed to relax and remain still with their eyes open,
not to fall asleep, and not to think about anything in particular. The
screen presented a fixation point and after the scans, all the participants
were interviewed, and none of them reported to have fallen asleep in the
scanner. The time of day of MRI acquisition was controlled within
participants.

Recording sessions were performed using a GE MR750 3.0 T scanner
(GE Medical Systems, Waukesha, WI) at CCBD, Hangzhou Normal Uni-
versity. T2-weighted echo-planar imaging (EPI) sequence was performed
to obtain resting state fMRI images for 10min using the following setup:
TR¼ 2000ms, TE¼ 30ms, flip angle¼ 90�, field of view¼ 220� 220
mm2, matrix¼ 64� 64, voxel size¼ 3:4� 3:4� 3:4 mm3, 43 slices. A
T1-weighted fast spoiled gradient echo (FSPGR) was used with the
following protocol: TR¼ 8.1ms, TE¼ 3.1ms, TI¼ 450ms, flip
angle¼ 8�, field of view¼ 256� 256 mm2, matrix¼ 256� 256, voxel
size¼ 1� 1� 1 mm3, 176 sagittal slices) was carried out to acquire a
high-resolution anatomical image of the brain structure.

Pre-processing. Dataset B was preprocessed with SPM12 (Wellcome Trust
Centre for Neuroimaging, London, UK) and DPARSF/DPABI (Yan et al.,
2016). The first 5 fMRI volumes were discarded in order to let the BOLD
signal reach stability. The pre-processing pipeline included: slice-timing

http://www.adni-info.org
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correction, realignment for motion correction, co-registration of the T1
anatomical image to the mean functional image, detrending, regression
of 6 movement parameters, 5 principal component analysis (PCA) white
matter and CSF Compcorr, and spatial normalization to MNI coordinates.
Scrubbing with Power 0.5 and linear interpolation was applied. This data
was also parcellated into 116 ROIs using the AAL parcellation (Tzour-
io-Mazoyer et al., 2002) and time courses were band-pass filtered be-
tween 0.01 and 0.08 Hz, as done with Dataset A. No further global signal
regression and spatial smoothing were applied.

Dataset C
We used a third dataset to study the discrimination between subjects

and conditions. In this case, a total of 22 subjects (age 20–31, 15 females)
were scanned during rest with eyes opened and natural viewing condi-
tion. Volunteers were informed about the experimental procedures,
which were approved by the Ethics Committee of the Chieti University,
and signed a written informed consent. In the resting state, participants
fixated a red target with a diameter of 0.3 visual degrees on a black
screen. In the natural viewing condition, subjects watched and listened to
30min of the movie ‘The Good, the Bad and the Ugly’ in a window of
24� 10:2 visual degrees. Visual stimuli were projected on a translucent
screen using an LCD projector, and viewed by the participants through a
mirror tilted by 45�. Auditory stimuli were delivered using MR-
compatible headphones. For each subject, 2 and 3 scanning runs of
10min duration were acquired for resting state and natural viewing,
respectively.

The BOLD signals were acquired with a 3T MR scanner (Achieva;
Philips Medical Systems, Best, The Netherlands) at the Institute for
Advanced Biomedical Technologies in Chieti, Italy. The functional im-
ages were acquired using T2*-weighted echo-planar images (EPI) with
BOLD contrast using SENSE imaging. EPIs comprised of 32 axial slices
acquired in ascending order and covering the entire brain with the
following protocol: TR¼ 2000ms, TE¼ 3.5 ms, flip angle¼ 90�, in-plane
matrix ¼ 230� 230, voxel size¼ 2:875� 2:875� 3:5 mm3. For each
subject, 2 scanning sessions of 10min duration were acquired for resting
state and 3 for natural viewing. Each run included 5 dummy volumes,
allowing the MRI signal to reach steady state and the subsequent 300
functional volumes were used for the analysis. Eye position was moni-
tored during scanning using a pupil-corneal reflection system at 120Hz
(Iscan, Burlington, MA, USA). A three-dimensional high-resolution T1-
weighted image was acquired for anatomical referencing using an
MPRAGE sequence with TR¼ 8.1ms, TE¼ 3.7ms, voxel
size¼ 0:938� 0:938� 1 mm3 at the end of the scanning session.

Pre-processing. Data were preprocessed using SPM8 (Wellcome Depart-
ment of Cognitive Neurology, London, UK), including slice-timing and
head-motion correction (see Methods in Gilson et al., ((2017)) for de-
tails), co-registration between anatomical and mean functional image,
and spatial normalization to MNI stereotaxic space (Montreal Neuro-
logical Institute, MNI) with a voxel size of 3� 3� 3 mm3. Mean BOLD
time series were extracted from N ¼ 66 regions of interest (ROIs) of the
brain atlas used in (Hagmann et al., 2008) for each recording session.

The data are available at github. com/MatthieuGilson/EC_estimation.
The discarded subjects in the present study are 1, 11 and 19, among the
22 subjects available online (numbered from 0 to 21). The same subjects
were discarded in our recent study (Gilson et al., 2017) because of
abnormally high BOLD variance.

Structural connectivity (SC)
For all models, we used a generic matrix of structural connectivity

(averaged over subjects) that is the same for all subjects, to determine the
skeleton of the effective connectivity (i.e., existing connections). For
Dataset C, structural connectivity for Dataset C was estimated from
diffusion spectrum imaging (DSI) data collected in five healthy right-
handed male participants (Hagmann et al., 2008). The gray matter was
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first parcellated into the N ¼ 66 ROIs, using the same low-resolution
atlas used for the FC analysis. For each subject, we performed white
matter tractography between pairs of cortical areas to estimate a
neuro-anatomical connectivity matrix. In our method, the DSI values are
only used to determine the skeleton: a binary matrix of structural con-
nectivity (SC) obtained by averaging the matrices over subjects and
applying a threshold for the existence of connections. The strengths of
individual intracortical connections do not come from DSI values, but are
optimized as explained below. For Datasets A and B, the generic SC
corresponded to the AAL parcellation with N ¼ 116 ROIs (Tzour-
io-Mazoyer et al., 2002). A similar pipeline was used with diffusion
tensor imaging.

It is known that both tractography and DTI underestimate inter-
hemispheric connections (Hagmann et al., 2008). Homotopic connec-
tions between mirrored left and right ROIs are important in order to
model whole-cortex BOLD activity (Mess�e et al., 2014). For both SC
matrices, we added all possible homotopic connections, which are tuned
during the optimization as other existing connections.

Connectivity measures and model estimates

Here we provide details about the calculation of the functional and
effective connectivity measures introduced in Fig. 1.

Empirical measures of functional connectivity
For each fMRI session, the BOLD time series is denoted by sti for each

region 1 � i � N with time indexed by 1 � t � T (time points separated
by a TR¼ 2 s). The time series were first centered by removing—for each
individual ROI i— the session mean si ¼ 1
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Model of cortical dynamics
The model uses two sets of parameters to generate the spatiotemporal

FC:

� The network effective connectivity (EC) between the ROIs (cf. Fig. 2
in the main text) is denoted by the matrix C in the following equa-
tions. Its skeleton is determined by the SC matrix, but not its weight
values: Weights for absent connections are kept equal to 0 at all times,
but weights for existing connections are estimated from FC matrices
for each session.

� The local variability is described by the variances (1 per ROI) on the
diagonal of the matrix Σ.

The model FC comes from the propagation of the local variability
—inputed to every ROI— that propagates via EC, generating network
feedback.

Formally, the network dynamics is described by a multivariate
Ornstein-Uhlenbeck process, where the activity variable xi of node i de-
cays exponentially with time constant τx —estimated using Eq. (7)— and
evolves depending on the activity of other populations:
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dxi ¼ �xi þ
X

Cijxj dt þ dBi ; (3)
 
τx j 6¼i

!

where dBi is formally a Wiener process, a. k.a. Brownian motion, with
covariance matrix Σ; note that only variances on the diagonal are non
zero here.

The simplicity of the model allows for an analytic (feedforward)
estimation of the covariances Q0

ij ¼ hxiðtÞxjðtÞi and Q1
ij ¼ hxiðtÞxjðt þ 1Þi,

which must reproduce the empirical bQ0
ij and bQ1

ij , respectively. In practice,
we use the two time shifts 0 and 1 TR, because this gives sufficient in-
formation to uniquely infer the network parameters (in the theory).
Assuming known network parameters C and Σ, the matrix Q0 can be
calculated by solving the Lyapunov equation (for example using the
Bartell-Stewart algorithm):

JQ0 þ Q0Jy þ Σ ¼ 0 ; (4)

where the superscript y denotes the matrix transpose. For Q1, it is simply
given by

Q1 ¼ Q0eJ
y
: (5)

Here J is the Jacobian of the dynamical system and depends on the
time constant τx and the network effective connectivity:

Jij ¼ �δij
τx

þ Cij ; (6)

where δij is the Kronecker delta; note also that eJ
y
is a matrix exponential.

Parameter estimation procedure
Here we provide details about the Lyapunov optimization (or

gradient descent) which is used to tune the model FC to the empirical FC
of a given fMRI session. Although it differs from a maximum-likelihood
estimate as classically used for multivariate autoregressive processes, it
provides a single estimated value for each model parameter.

For each individual and session, we calculate the time constant τx
associated with the exponential decay of the autocovariance averaged
over all ROIs:

τx ¼ 1
N

X
1�i�N

1

log
�bQ0

ii

�
� log

�bQ1

ii

� (7)

This is used to “calibrate” the model, before its optimization.
In order to invert the model (i.e., for the model FC to reproduce the

experimental FC), we iteratively tune the parameters to reduce the model
error defined as

E ¼ 1
2

P
i;j

�
ΔQ0

ij

�2
P

i;j

�bQ0

ij

�2 þ 1
2

P
i;j

�
ΔQ1

ij

�2
P

i;j

�bQ1

ij

�2 : (8)

Here each term —for FC0 and FC1— is the matrix distance between the
model and the data observables, normalized by the norm of the latter; for

compactness, we have defined the difference matrices are ΔQ0 ¼ bQ0 �
Q0 and ΔQ1 ¼ bQ1 � Q1.

The idea behind the tuning algorithm is to start from zero connec-
tivity C ¼ 0 and homogeneous Σ, then calculate the model Q0 and Q1

using the desired Jacobian update given by

ΔJy ¼ �Q0
��1
h
ΔQ0 þ ΔQ1eJ

y
i
; (9)

which decreases the model error E at each optimization step, similar to a
gradient descent. The best fit corresponds to the minimum of E. Finally,
the connectivity update is
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ΔCij ¼ ηCΔJij (10)
for existing connections only; other weights are forced at 0. We also
impose non-negativity for the EC values during the optimization. To take
properly the effect of cross-correlated inputs into account, we use the Σ
update as in Gilson et al. (2017):

ΔΣ ¼ �ηΣ
�
JΔQ0 þ ΔQ0Jy

�
: (11)

As with C for non-existing connections, off-diagonal elements of Σ are
kept equal to 0 at all times.

In numerical simulations, we use ηC ¼ 0:0005 and ηΣ ¼ 0:05. Further
details about the derivation of the optimization updates are provided in
Gilson et al. (2016).

The optimization code is available with Dataset C at github. com/
MatthieuGilson/EC_estimation.

Comparison with state-of-the-art dynamic models and Bayesian estimation to
interpret fMRI data. Compared to dynamic causal modeling (Friston et al.,
2003; Friston, 2011), our model makes the simpler assumption of line-
arity for the local dynamics. Doing so, it ignores an explicit modeling of
the mapping between the neuronal activity and the BOLD signals (Ste-
phan et al., 2004). Moreover, it uses a simple model of local variability
(Wiener process) related to Σ to generate FC than recent development of
DCM for resting state (Friston et al., 2014). In exchange for this
simplicity, we obtain a very efficient estimation procedure for networks
of about 100 ROIs with 30% density, yielding� 3000 EC parameters. It is
also worth noting that the objective function for our framework are the
BOLD covariances, which are canonically related to the BOLD
cross-spectrum used in the DCM for resting state (Friston et al., 2014).
Analysis and vectorization of EC and corrFC

In this section, we provide details about the analysis of the corrFC and
estimated EC matrices that are compared across sessions for subject and
condition identification. As illustrated in Fig. 1C, the connectivity mea-
sure for each session l was transformed into a vector vl by extracting the
lower triangle for corrFC or by applying the SC mask for EC. Following
the literature in machine learning, we refer to a connectivity measure for
a single session as a sample. The size of the samples vl is p ¼ 6670 for an
FC session and p ¼ 4056 for an EC session with Datasets A and B (cor-
responding to N ¼ 116 ROIs). For Dataset C, we used only EC with p ¼
1114 vector elements (for N ¼ 66 ROIs). Note that we use a slightly
different indexing in this section compared to the previous one: In the following
i refers to a link in the vector vl ¼ ðvliÞ, similarly to the pair ði; jÞ for a matrix
element Cij before.

Similarity between sessions
We used Pearson correlation coefficient (PCC) as a measure of simi-

larity, both within and between subjects, because is the metric used in the
kNN classifier; for a comparison using ICC measure see (Pannunzi et al.,
2017). For a pair of sessions l and m as reported in Fig. 2A and B, the
similarity is:

Slm ¼ PCC
�
vl; vm

�
(12)

The distribution of within-subject similarity (WSS) in Fig. 2B was
obtained by using all pairs of vectors vl and vm with l 6¼ m from the same
subject, in both Dataset A1 and B. To compute the distribution of
between-subject similarity (BSS), all possible combinations of vector
pairs vl and vm from distinct subjects were used.

Dimensionality analysis
To study visually how the variability of the data is spread over in the

space with high dimension p, we applied principal component analysis
(PCA) to extract the main directions (principal components, or PCs) that
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capture the largest portion of the data variance. In Fig. 2C that compares
corrFC and EC, PCA was applied to the whole Dataset A1 (6 subjects,
40–50 sessions per subject) and the first 6 PCs were retained. Each panel
corresponds to PC1 to PC3 on the one hand, and PC4 to PC6 on the other
hand.

Silhouette coefficient
The silhouette coefficient (Rousseeuw, 1987) is defined for each

vector vl;s with indices l for the session and s for the subject. Here, each
subject s is a cluster and the similarity in Eq. (12) is taken as the metric,
but the indices l andm are replaced by doublets of the type ðl; sÞ here. For
a given sample l; s, we have the average similarity within his own cluster s
defined as

al;s ¼ meanm6¼l

�
Sðl;sÞðm;sÞ

�
; (13)

and the maximum —over all other clusters— of the same average simi-
larity, but with elements from another cluster:

bl;s ¼ max
s0 6¼s

h
meanm0

�
Sðl;sÞðm0

;s
0 Þ�i : (14)

The silhouette is then given by the following contrast between the
cohesion of the element within its cluster (al;s) and the separation from
other clusters (bl;s):

σl;s ¼ bl;s � al;s

maxðal;s; bl;sÞ : (15)

Values of silhouette range to 1 for fully separated clusters to �1 for fully
overlapping clusters. These values correspond to the violin plots without
PCA in Fig. 2E.

In Fig. 2D and E, the silhouette coefficient were computed for each
point in these clouds in a 6-dimensional PC space for Dataset A1. The
reason for choosing the first 6 PCs is because the mean silhouette coef-
ficient of EC data reaches a maximum, before decreasing (Supplementary
Figure S3, left panel). The same method was applied to the Dataset B (30
subjects, 10 sessions per subject), for which the retained maximum was
30 PCs (Supplementary Figure S3, right panel).

Within-session z-scoring
For the classification in Figs. 3 and 4, the values of the EC and corrFC

links were z-scored within each session, using the mean and standard
deviation of the corresponding vectorized connectivity measure vl in
Fig. 1C:

bvli ¼ vli �meani
�
vli
�

stdiðvliÞ
; (16)

where the vector elements are indexed by i, corresponding to a link in the

EC or corrFC matrix. The z-scored vectors bvl are the inputs of the clas-
sifiers, which means that the classification relies on the ranking of the
vectorized elements vl rather than the absolute values of their elements.
This is important to understand our claim in the Discussion about where
the discriminative information is: The repartition of the weak/strong EC
weights across the brain is different across subjects, which is picked up by
the algorithms.

Classification of sessions to attribute them to subjects
Fig. 3A shows the classification procedure applied to identify subjects

using connectivity measures and estimates. First, a fixed number of ses-
sions per subject were selected from each data set, corrFC and EC
matrices. These matrices were vectorized (recall Fig. 1C) and individu-
ally z-scored using Eq. (16), using the mean and standard deviation of
each vl. Then, the corresponding classifier—1-nearest-neighbor (1NN) or
multinomial logistic regression (MLR)— was trained using two different
approaches. In the main text, results are presented without applying PCA
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as a preprocessing step. This is motivated because PCA does not signifi-
cantly improve the classification performance for the MLR. Results about
classifier with PCA are discussed in Supplementary Figures S5 to S8.

In all cases, the accuracy of a classifier is evaluated by its prediction of
samples in the test set, as a cross-validation. We used Dataset A1 to study
the effect of increasing the samples in the train set, and Dataset B for
increasing the number of subjects. The curves in Fig. 3B and C were
obtained after iterating over different sessions and subjects 100 times
with this cross-validation (mean and standard deviation are plotted). The
same method was also applied to Dataset C by training two MLR classi-
fiers, one for subjects and one for conditions. Both classifiers are avail-
able in the scikit-learn package (Pedregosa et al., 2011).

1NN classifier. A kNN classifier is a technique that assigns to a new
sample the class to which belong the majority of its k closest neighbors. In
our case, we use k ¼ 1 with a single nearest neighbor. Moreover, we use
the PCC-based similarity measure in Eq. (12) as the metric to evaluate the
inverse distance between two samples (here sessions). Like with clus-
tering algorithm in general, closest samples (i.e., most similar sessions)
are grouped together. Because the PCC similarity is not linear, it can be
considered as a non-linear classifier, in comparison to a linear classifier
such as a perceptron or a MLR. In practice, the database has an equal
number of sessions per subject—either vectorized and z-scored corrFC or
EC— ranging from 1 to 40 for Dataset A1 in Fig. 2B. The identity of the
each target session l from the test set is predicted by the identity of the
most similar session from the test set ðSl;1; Sl;2;⋯; Sl;DÞ with D the size of
the database, as illustrated in Supplementary Figure S4 for 1 session per
subject as database (and corresponding to the results presented in Fig. 3B
and C).

MLR classifier. MLR is the canonical tool for high-dimensional linear
classification. It tunes a weight for each feature (one per dimension), thus
selecting the important ones. The parameters (or regressors) of the model
are adjusted in order to predict the probabilities of new samples of
belonging to each class (or category). It relies on the following logistic
function that relates to the probability for the vectorized connectivity
measure vl (with elements indexed by i) for session l to be in the subject
class s:

Pr
�
vl 2 s

� ¼ ϕ

 X
i

ws
i v

l
i

!
; (17)

where ϕ is the sigmoid function (ranging from 0 to 1). The training is
performed by a regression to find the classification weight ws

i such that
Prðvl 2 sÞ discriminates the class s against the last subject s'. A refinement
that does not appear in Eq. (17) is that there is an extra weight to correct
for the possibly non-zero mean of the samples vl. Note also that for there
are M � 1 regressors for M subjects, such that the weights are well con-
strained. In practice, we used train sets with equal numbers of sessions
per subject.

Extraction of discriminative support networks with RFE
We examined which links strongly contributed to the classification, in

a similar fashion to PCs as mentioned above. The motivation was that
individual links might be mixed in PCs and appear redundantly in several
PCs that significantly contributed to the classification (Figures S7 and
S8). Therefore, we evaluated the contribution of individual links that
supported the classification, forming networks of most discriminative
elements in EC (as represented in Figs. 3D and 4C). In order to extract
these support networks, we employed a commonly used method in ma-
chine learning, recursive feature elimination (RFE), to rank the links
—taken as features— according to their relevance for the classification
(Guyon et al., 2002).

For each application of the RFE algorithm, the train set was composed
of 90% randomly chosen samples (to capture the full variability of the



V. Pallar�es et al. NeuroImage 178 (2018) 238–254
data) and test set of the 10% remaining samples. After fitting the MLR
classifier, RFE removes the link with the smallest classification weight ws

i
in the MLR formula in Eq. (17), which measures the contribution of the
link to the classification. The removing procedure is repeated recursively
on the shrinking subset of links until only one is left. This gives a ranking
for the links according to their relevance for the classification. We then
evaluated the accuracy of MLR on the test set when increasing the
number of features following the order given by the RFE ranking. This
training and testing procedure was repeated 100 times with different
train and test sets each time. We selected the number of features for
which the mean test set accuracy was maximum. In order to find the
maximum we chose the number of features for which the numerical
derivative of the mean was less than 10�6. In order to reduce the impact
of fluctuations due to the random selection of samples, we smoothed the
curve of means with a rolling average of width 2 features. Since the ac-
curacy is expected to increase initially as a function of the number of
features and then either saturate or decrease, this method allows for
finding the number of features for which the classifier performance is
maximum or adding more features has no practical benefit.

In contrast, kNN cannot be easily used for RFE since it does not es-
timate weights associated to links. Therefore, for kNN to be used with
RFE, one needs to put the model in a wrapper to compare the effect of
removing each combination of links on the performance. However, given
the high amount of features of our setting, wrappers cannot be evaluated
on all subsets of features (� 10300 tests would be required for 1000
features). Wrappers may rely on approximate greedy algorithms, for
example, eliminating the feature that scores worst. It is well known that
greedy algorithms might produce inappropriate solutions if the problem
does not have optimal substructure. In addition the computation time
almost scales as p2 with p the number of links, while for RFE it is linear in
p.

Software tools
The computer code for the model optimization and classification is

available online with Dataset C at github. com/MatthieuGilson/
WBLEC_toolbox. It is written in the open-source language python and
uses the numpy and scipy libraries (http://www.scipy.org), as well as
scikit-learn library (Pedregosa et al., 2011) for machine-learning routines
(http://scikit-learn.org).

Connectivity measures and estimates, as well as similarity analyses
were performed in MATLAB 2016 (TM). Network plots in Fig. 6 of the
main text were done in Gephi 0.9.1 (http://gephi.org).
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